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There are considered two contact problems for an elastic half-plane (plane 
strain case ) ,l)reinforced along its whole boundary by a thin elastic stiffener 

(stringer), and 2 ) coated by a thin ideal incompressible fluid layer. It is as- 
sumed that the stamp is impressed into the stiffener boundary or the fluid layer 
and moves at a constant velocity along this boundary. We neglect friction 
forces in the contact domain, and mass forces. By using a Fourier integral 
transformation, the problems are reduced to integral equations of the first kind 

with singular difference kernels. The structure of the solution of these equa- 

tions is investigated. Asymptotic methods are used to construct the approxi- 
mate solutions. 

1. Problem of impreaaing a moving elaatlc rtamp in an elastic 
half-plane reinforced along a rtringer boundary, Let the elastic half- 

plane (Y < 0) with mechanical characteristics Gt, Vz and density Ps be reinforced 
along its whole boundary y = 0 by a thin elastic stiffener, whose tensile deformation 
is described by the equation 

ku” = r+ - a_ + pu”, k = hE (1.1) 

Here h is the stiffener thickness, E is its Young ‘s modulus, u is the mean displace - 
ment in the thickness along the z axis, ‘t+,rG_are tangent stresses acting along the 

upper and lower faces of the stiffener, respectively, and P is the density of the stiffener 
material. We assume that the stiffener is so thin that its resistance to bending strains 

can be neglected, 
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An elastic stamp with the mechanical characteristics G,, ~1 moves at a constant 
velocity w along the upper stiffener boundary in the positive xdirection . The stamp 
is pressed to the stiffener boundary by a force P, whereupon a contact domain of width 

2~ with the stiffener is formed. Outside the contact domain the stiffener upper boun- 

dary is stress-free. 

Let us couple a moving coordinate system to the stamp Fig. 1. 

51 = J’ - Wt , y, = y (1.2) 

Let the stamp boundary be described by the equation y = 9 (2) in this system, 
and let an unknown contact pressure p (2) act on the stamp along the line of contact 

- a < z < a (here and henceforth we omit the subscript one on z and y ). Assuming 
the minimal radius of curvature of the stamp is Pmin > a for 1 II: 1 < a , we have 
the following expression (in the Hertz theory approximation) 

(1.3) 

for the derivative of the displacement u1 of points of the stamp surface along the y axis. 
The conditions for stiffener contact with the stamp and the elastic half-plane can 

be represented in the form 

r+ = 0, -G_ = TX{,2 (5, O), z.! + u2 (5, 0) = 0 (1.4) 

Here tXUs (z, 0) is the tangential contact stress acting on the interface between the 
stiffener and the half-plane, and ug is the displacement of points of the half-plane along 
the x axis. The following relationship hence holds in the moving coordinate system be- 

cause of (1.1) . 

ce,” = --7_ (x), C2U2n(5, 0) = Txu2 (x, O), c2 = k - pw2 (1.5) 

Let us assume that W < jfkp -l. 
Since the stiffener does not resist bending, we will still have on the half - plane 

boundary 

q/2(x, 0) = P(J) (Is I\(a), $2@", 0) -= 0 (ITI > a) (1.6) 

Let US admit that the velocity of stamp motion along the stiffener boundary is less 

than the compression and shear strain wavepropagationvelocitiesin thehalf-plane, hence 

By using the Fourier integral transform in the variable z we now find the solution of 
the Lami equations with inertial terms with the boundary conditions (1.5 ) and (1.6 ) in 
the half-plane and the condition of decreasing stress at infinity. We hence obtain 

23 (x, 0) = - -L- i p (5) dE [ $$ sin ’ “F 5, du (1.8) 
%+ 

--(I 0 
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fj2 = G2Y (1 - r2) c?y (1 - v2) 
i - BY ’ CL = ‘&[bby-((1 +V”)“l 

D= @r (1 - Y212 
(1 - Br) I4Br - (i + vx)21 

Again taking into account that the stiffener does not resist bending, we write the 
condition for the relation between ui’ (5, 0) and 2%’ (z, 0) which holds on the 

contact line 

Vi’ (5, 0) - u2) (570) = e -9W (IzI<a) (1.9) 

Here E is the angle of stamp rotation upon insertion into the stiffener. 

Substituting (1.3 ) and (1.8 ) into (1.9 ) ) we obtain an integral equation to deter - 

mine the contact pressure p (5) 

a P (4) s -dE+; \ p(E)N(~)d~=nO12[e-q’(x)] (l-lo) 
4 -X 

-a --a 

P - 1) 81 W2 
(J = e,+ cl, ’ 

012 = ’ 
01 + 02 ’ 

H(t)= (.$+.lu 

0 

which can also be represented in the form 

\ P(E)K(~) dE = 3~3,2 [E - 4’ (X)1, 

--a 

oi) 

K (t) = 
s 

u$a-+i 
u+l 

sin ut du 
0 

The statics conditions 

(1.11) 

(1.12) 

must st.iII be appended to (1.10 ) or (1.11) . Here e is the eccentricity of the application 

of the impressing force P. Let us note that the force P should be so large that the con- 

dition p (z) > 0 would be satisfied for ail \ x \ < U. The second condition in (1.12 ) 

sets up the interrelation between e and e. 
Three cases can be represented in solving (1.10 ) or (1.11) together with the first 

condition in (1.12 ) : 
a) If I$’ (+ a T 0) - $’ (+a, 31 0) = const # 0, then the quantity a should 

be considered given v and the function p (x) can have an integrable singularity at the 
points X = f U i 

b) If the derivative of the function $ (x) is continuous in the neighborhood of the 

point x = a (or x = - (I ), then the quantity a is to be determined, and the func- 

tion P (x) should be bounded at the point z = a; 
c) If the derivative of the function ‘Ic, (x) is continous in the neighborhood of the 

points 5 = + a, then the quantity u is also to be determined, but the function p (z) 
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should be bounded at the points z = f a. 
Let us note that the problem posed has been examined earlier in a particular case in [ 1-j. 

2. Problem on the gliding of an elastic body over the wet 
boun$ary of an alrrtic half-plane, Let an elastic half-plane Gz, v21 P2, 

Y < 0 be covered by an ideal incompressible fluid of thickness h, and let the fluid 

density be p. An elastic body (G,, Yr) pressed to the layer boundary by a force P 
(Fig. l$ glides at a constant velocity W over the upper boundary of the layer. Let us 

connect a moving coordinate system (1.2 ) to the body, In this system e is the action 
arm of the force, and the length of a section of the body boundary which is in contact 
with the fluid is determined by the inequalities - a < x \c a, 2a >> h. The pres- 
sure p on the fluid surface equals zero outside the contact section. Let us assume that 

the flow is potential and stationary, The boundary of the gliding body is described by the 
equation g = - 6 - EZ-~-q(3), where p>Oand r&+---h foraUjIt.[-\<a 
and the minimal radius of body curvature is Pmtn > a for all 1 5 f < a .- 8, E > 0 . 

Taking account of the assumptions made, we linearize the Bernoulli integral in the 
neighborhood of the main flow I for which %:a~0 = W, U,O r= 0, po = 0. The contact 

pressure p (r) acting between the gliding body and the fluid fori z I<. aand also a, E 
and e are the quantiti~ desired in the solution of the problem _ 

We have the equation 

Here and above UX, L’v are the velocity projections in the z and 9 axis directions, 
and rp (J, y) is the velocity potential. 

Let us introduce the dimensionless variables 

y’ = y/h, x1 = xla, G = hla < 1 (2.2) 

and we easily see that the degenerate flow, for very small o, in the fluid layer is des- 
cribed by the equation qY,” = 0. Solving this equation and returning to the old vari - 

ables t we find 

cp (59 Y> = Fl (4 Y + F2 @>7 ql = PI (4, (2.3) 
P = --PI+ If+,’ (z)y + Fz’ (x)1 

Now, we note that a pressure p (.z) acts at y = 0 and 1 x 1 < U on the fluid from 
the elastic body, and the pressure Q (z) at y =* - h and f ZE 1 < 00 from the ela- 

stic half-plane. For y = 0 and 1 z 1 > a we have p (3) - 0 by tiefi~~on. Satis- 
fying these conditions and taking still into account that q = vy = 0 for R: = - 00, 
we have 

Here P” (2) = P (4 for 15 I < 4 p* (4 = 0 for 1 z 1 > a. 
After the customary Linearization used in the theory of a thin slightly Cambered 

wing, we obtain the following condition on the contact boundaries of the fluid and the 



Interactton of a moving elastic stamp with an elastfc tralf-plane 503 

elastic body and the elastic half-plane: 

uy l! = Wf’ (x) (2.5) 

where y = f (z) is the equation of the boundary. Therefore, we have the following 
contact condition with the elastic body by virtue of (2.5 ) 

F, (z) = IV, (z, 0) + 9’ (3) - ElW (I + I s al (2.6) 

and with the elastic half-plane 

F1 (x) = ua’ (s, -h) w (Isl<Dc) (2.7 > 

Here VI and us are elastic displacements of points of the body and the half-plane along 
the y axis. The quantity ul’ (x, 0) is given by (1.3 ). 

To determine the quantity vs’ (CC, -h) , we subject the Lami equations with the 
inertia terms to a Fourier integral transformation in the variable x and we construct their 

solution for a half-plane under the boundary conditions 

cf, (5, --h) = --Q @I, %Y (5, --h) = 0 (IZI<M) (2.8 > 

and the con~tion of no stresses at infinity. We also take into account here that 4 (z) --+ 0 

as 1 z 1 -+ XJ and that the inequalities (1.7 ) hold w We consequently obtain 
m 

u2’ (xv - h) = & \ sgn aQ (a) e+ax da 
a . 

(2.9) 
-Q) 

62 = Gz &yf3 - (1 + y2)21 p-1 (1 - yZ)-1 (2.10) 

Here 0 (a) is the Fourier transform of the function q (5). 
Substituting (2.4) and (2.9) into (2.7 ), and then subjecting this relationship to 

Fourier transformation, we set up a connection between Q (a) and the Fourier trans- 

form P (a) of the functionp* &-) 

Q(a) = 

The inverse transformation yields 

An integral equation in p (z) can now be obtained if the contact condition (2.6) 
is transformed with (2.4 ), (1.3 ) and (2.12 ) taken into account, We will have 

where H (t) is given by (1.10). Equation (2.13) can also be represented in the form 
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of (1.11) , where 812 should be replaced by 8,. Condition (1.12 ) must also be app - 
ended to (2.13 ). 

Furthermore, let us examine two possible gliding modes : 
a)If $'((a--0) -$'(a+O)= const # 0, then the quantity a should be 

‘considered known and a solution of (2.13 ) should exist such that the quantity p (a) is 

bounded ( Joukowski ‘s condition ) . 

b) If the derivatives 9’ (2) and 9” (x) are continuous in the neighborhood of the 
point 5 = a, then the quantity a is to be determined and p (a) and p’ (a) should be 

bounded [ 2 1. 
Therefore, both problems under consideration are reduced to the same integral equ- 

ation of the form (1.10) or (1.11) ( f& = 0, for the second problem). The constants 
a, p and 6)s in the integral equation are given by (1.8) and (1.10) for the first prob- 

lem and by (2.10 ), (2.11) and (2.13 ) for the second. 

3. Structure of the solution8 of the integral rquetion (LlO), 
orymptotic rolutlonl, Evaluating the integral [ 3 1, we represent the kernel H (t) 
of the integral equation (1.10 ) in the form 

H (t) = (ci t sin 1 t 1 - cos t si 1 t I) sgn t (3.1) 

Here oi t and si t are the integral cosine and sine. Using the known expansions of 
these functions in series for small t [ 3 1, we see that for H (t) the following represen- 
tation is valid for all 0 < 1 t 1 < 03 : 

Hi(t) = 5 aikt2”+’ (i = 1, 2, 3) 
k=O 

(- 1)” n (- l)k+l 

%k = (2k + l)! ’ a2k = 2(2k + 2)! ’ 

H (4 = ln I t I H1 (t) + I t ) H2 (t) + H3 (t) + ‘/2n sgn t (3.2) 

a30 = c - 1 (3.3) 

+ %k = (- I)‘( { (2k 1 I)! (c -&j 
k 

c 2k + i -44s 

2S(2S)! (2k-2sf1)(2~-2ZFj- 1)! > 
S=l 

Here C is the Euler constant, and ?r > 1 in the expression for oak. 
Analyzing the representation (3.2 ) , we conclude that for all I t ) < A, where A 

is an arbitrary number as large as desired, the following relationship is valid: 

H(t)= $--sgnt+tlnItJ+F(t), b’(t)~B,‘(--A, A) (3.4) 

Here Bka (- A, 11) is the space of functions whose k - th derivatives satisfy the 
Halder condition with 0 < a < 1 for t E [ --_A, Al . 

The results of [ 4 ] can be used to prove the following theorems. 

Theorem 1. Let ‘II, (.z) E Bra (- a,o),O<a<l.Thenifasolution of 

(1.10) exists for J.r E (0, cm) such that p Ix) EZ L, (- a, a), 1 < p < 2, then 
p (z) has the form 

p (x) = w (Lx) (a” - xy, o(x) E BV (-- a, a), y = inf @, +) 
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Theorem 2. 
I3,s (a - 

ktl) qJ(2)EW(--a,a), o<a<i, 2)$(z)= 
a, a), E > 0, ‘12 < fi < 1. Then if a solution of (1.10) exists for a given 

~~(O,=~)suchthat 1>p(s)ELp(--a,a).l<pc2,2)Ip(z)l\(n,m>0 
for a - E < t < a, then the relationship 

a 

P = - nOIBea + 
sv 3 F42$’ (8 + Q? (EN 6 

(3.5) 

---a 

g (4 = -$ i p(E)H (y) dE 
--n 

is satisfied, and p (2) has the form 

Pts) - 1/sm(Z), o(X)EB’(-a, a), 

y = inf (a, + , G) 

(3.6) 

Theorem 3. Let 1) q(z)EBlu(-a,u), O<a\<i: 2)\cI(s)E 

B,fi (U - E, a), e > 0, l/z < b < 1, 3) 4 (X) E Bls (-a, -a f 8). Then,if 
a solution of (1.10) exists for f-r E (0, co) such that 1) p (z) E L, (- a, a), 

1 < p < 2, 2) 1p (5) 1 < m, m > 0 for J: E [a - E, al and z E i-4 -a 
-I- el, then the relationships 

p = i Kw’(E) -I- w(t)1 &fL+ 

---a 

a 

Jc42 = 
s 

--d 
[0124J’ (8 + ai! @)I g+ 

(3.7 ) 

are satisfied and p (5) has the form 

p @) = o (5) 1/u2 - x2, o (5) E Bv (- a, a) 
(3.8) 

y=inf a,“‘-,fJ--f) 
( P 

Theorem 4. Let 1) ‘II, (z) E BP (- 6 a), 0 c a < 17 2, ‘# (z) E 

a, a), e > 0, ‘12 < B < 1. Then if a solution of (1.10 ) exists for p E 

(c?ys&hthat l)p(z)eLp(-a,a),.i<p<2,2) Ip’(z)I<m, m >0 
for a - E < 5 < a, then the relationships (3.5) and 

Ml12 [e - p’ (a)] - nag (a) = 

a m 
(3.9) 

s _-. (0 - 4)“’ 
ien [‘I” (a) - “I” @I+ CJ Ig (a) - g (t)]} dE 

are satisfied, and p(s) has the form 

ME BY(-- a,~) (3.10) 
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AS an i&,&ration, let us present the proof of Theorem 4, taking into account that 

Theorems 1 - 3 are proved more simply and by an analogous scheme. We show that a 
function g (3) of the form (3.5 ) possesses the following properties : 

g (2) E B6 (-- a, a), 
P-1 

6-r’ 
g (x) E B:-O(a - 8. a) (3.11) 

To do this, we represent g (x) by using (3.4) in the form 

g (x) = gx 69 + gz (z) + g3 (x), g, (x) = ~~-~~~~~~~~~~ (3.12) 
U 

672 (x) = A[pk--e)W + ( ~(E)(E---)I17Jf-.qdj7 xy- 

g3 (x) =I -J- 
w 

\ pcS,q+y; - 

Because of the properT:es of the function P (i) mentioned in the theorem + and the 

properties of F (t) noted in (3.4), it can be shown that gs (5) E h1 (- 4 a)- Let 
us differentiate gz (x) with respect to 2 and let us estimate 

n 

(3.13) 

z>--a 

It follows from (3.13 ) that gz (z) E BP (- ok o) and gs (x) E @^O (o - 8, a). 

The following estimates hold for & (2) 

Iio+-gl’(~)l =+++_p(r)l = $ m(a-r), 2>-(1 

It follows from (3.14) that, gl (x) E Bb (- a, o) and gl (x) E & 1 (a - E, a). 
Therefore , the relationships (3.11) are proved . 

We note that the integral equation (1.10) can be written in the form 

Q Pret 
1 k-_2 d!? = 51, (912 f& - *’ (x)1 - og (X)), (1 z I.< a) 

(3.15 ) 

We temporarily assume that the function g {IC) is known, then the solution of the 
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singular integral equation of the first kind with Cauchy kernel (3.15) * which possesses 
the properties mentioned in the conditions of Theorem 4, will have the form [5] 

012 14’ V) - 9’ (4lf (3.16) 

under the additional conditions (3.5 ) and (3.9 ) , Here, the properties of the functions 

9 (x) mentioned in the conditions of Theorem 4, as well as the properties (3.11) of 
the function g (x:) are used essentially, Equation (3.16 ) can be rewritten as follows : 

(3.1-i ) 

n h (4 w=f s t-_s dt - lmP” (4 --I- v’ WI 
--a 

h.(t) = 5 
(0 

{%s N’ (9 - 9’ (d) + Q” (4 (a - t)l + 

0. k (0 - g (4 + g’ (4 (a - tM 
We note that h (* a) = 0 , and by virtue of (1.30) [ 41, the inequalities 

19’ @I - %’ (4 + ‘-tm (4 (a - $1 I < A, I t - a p (3,18) 

I g (8 - g (4 + g’ (4 (a - t) t d -42 1 t - a 12-O 

hold in the neighborhood of the point t = a , 
Now, taking account of (3.18 ) as well as the other properties of the functions Q (x) 

and g (2) we arrive at the conclusion that h(t) E BJ' (- a, a), y - inf (a;, p - 

v2, 6); Furthermore ) reasoning for the integral (3.17 ) just as for the integral (2.3 ) 
[ 4 1, we see that the function w (5) of the form (3.17 ) belongs to the class &’ (- a, a). 

Let us turn to the problem under consideration. The condition (3.5) is used to de- 

termine the quantity a for variant b ) of the first problem t the quantity a will be deter- 

mined from the first condition of (3.7 ) for the variant c) , and the second condition in 
(3.7 ) permits the determ~ation of the quantities E and e together with the second con- 

dition of (1.12 ) . Together with the second condtion in (1.12 ) , condition (3.5) permits 
the determination of the quantities E and e for variant a) of the second problem I while 
the quantities a, E and e for variant b ) can be found from conditions (3.5)) (3.9 ) 

and the second condition in (1.12). 
As the expansion (3.2 ) shows, for large values of the parameter h the solution of 

the integral equation (1.10 ) must be sought in the form [ 6 ] 

p(X) = 5 i pij (5) hwi (In A}’ 
i=o j=o 

(3.19) 

Substi~ting (3.2 ) and (3.19 ) into (1.10 ) , inverting its singular part exactly , and 
then equating coefficients of identical powers of h-1 and In x in the left and right 
sides of the relationship obtained, we obtain an infinite system of relations for the se - 
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quential determination of the functions pij (z). Limiting ourselves to a finite number 
of terms in (3.19), we can obtain an asymptotic representation for p (t) for large h. 

by the method mentioned. Using the Banach fixed-point principle a ~,a, 0 ( h, ( 00 

can be found such that for 31 > ho the solution of (1. I.0 ) in the class Lp (- a, a), 
1 < p < 2 exists and is unique, and converges uniformly in L in the norm L, (-- 

a, a) in the double series (3.19). 

We note that 0 --<;: 1 t 1 < 2 / h in (3.2 ) , and hence, for sufficiently large h it is 
possible to take H (t) = r/ 23r sgn t approximately, fn this case ( 1.10 ) can be given 
the form of the Prandtl integral equation for a finite-span wing 

A whole arsenal of methods of finite-span wing theory I as well as the theory of 
elastic stiffeners (stringers), particularly the results in [ 7 , S] , can be used to find ap - 

proximate solutions of (3.20). 
For very large h when the expression in the first square brackets can be neglected 

in the right side of (3.20), the solution for variants a) - c) of the first problem has 
the form 

Variant a) 

variant b ) 

(3.22 ) and (3.8 ) must be appended here for g fs) zz 0; 
variant c ) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

and (3.22) and (3.5) must also be appended here for g (CC) z 0. 
The solution for variant a) of the second problem is given by (3.23 ) ,(3.22) and 

(3.5) for g (z) EE 0 with e12 replaced by 8, , while we have for variant b) 

where (3~22 ) I( 3.5 ) and (3. S ) must also be appended here for g (s) G () with e12 re- 
placed by el. 
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A certain modification of the method of “small h ” [ 6 ] permits the construction of 
the principal term of the asymptotic solution of (1.11) for the problems under considera- 
tion with small values of h. Themain difficulty lies in factorizing the function 

uWuz+e2+a+1) 
-&(u)= )/q---- - +e2 (vu2+e2+,) =L+(u)-L(u) (e--+0) 

Let us henceforth limit ourselves to the construction of just the “degenerate” sol- 
ution which is suitable for the case of very small h. 

We note that for large t the asymptotic representation 

K (t) - (i + 0) t-’ 

holds for a kernel K (t) of the form (1. ll), and the degenerate solution of the problems 
for very small h will be determined by the equation 

* P(4) 5 Fd~=xO~2[e-W(~)1 (IslCa) 

-a 

where for the first and second problems, respectively 

Then the solutions of the problems for very small h will be determined as before, by 
(3.21)-(3.25) and (3.5),(3.7),(3.9),where g (5) z 0 and the quantity f.ll, or e1 

is replaced by the appropriate e.xpression RIZ*. 
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