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There are considered two contact problems for an elastic half-plane (plane
strain case ),1)reinforced along its whole boundary by a thin elastic stiffener
(stringer), and 2) coated by a thin ideal incompressible fluid layer. It is as-
sumed that the stamp is impressed into the stiffener boundary or the fluid layer
and moves at a constant velocity along this boundary. We neglect friction
forces in the contact domain, and mass forces. By using a Fourier integral
transformation , the problems are reduced to integral equations of the first kind
with singular difference kernels, The structure of the solution of these equa-
tions is investigated. Asymptotic methods are used to construct the approxi-
mate solutions,

1, Problem of impressing a moving elastic stamp in an elastic
half-plane reinforced along a stringer boundary, Let the elastic half-
plane (y <C 0) with mechanical characteristics Gz, V2 and density 92 be reinforced
along its whole boundary y = 0 by a thin elastic stiffener, whose tensile deformation
is described by the equation

ku" =, —1_+pu”, k=hE (L1)

Here A is the stiffener thickness, E is its Young 's modulus, u is the mean displace -
ment in the thickness along the z axis, T,,t_4re tangent stresses acting along the
upper and lower faces of the stiffener, respectively, and P is the density of the stiffener
material, We assume that the stiffener is so thin that its resistance to bending strains
can be neglected,

Fig.1
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An elastic stamp with the mechanical characteristics Gy, v; moves at a constant
velocity W along the upper stiffener boundary in the positive .x direction. The stamp
is pressed to the stiffener boundary by a force P, whereupon a contact domain of width

2a with the stiffener is formed. Outside the contact domain the stiffener upper boun-
dary is stress-free.

Let us couple a moving coordinate system to the stamp Fig. 1.

x]_:J"-—Wt, h =1y (1'2)

Let the stamp boundary be described by the equation ¥ = ¥ (z) in this system,
and let an unknown contact pressure p (&) act on the stamp along the line of contact
— a < = < a (here and henceforth we omit the subscript one on x and ¥y ), Assuming
the minimal radius of curvature of the stamp is Pmin>>a for |z| << @ ,we have
the following expression (in the Hertz theory approximation)

a

, 1
Ul (.Z‘, O): W S E}_,’fi dg, 61 = 131\/]

(1.3)

for the derivative of the displacement vy of points of the stamp surface along the y axis,
The conditions for stiffener contact with the stamp and the elastic half-plane can
be represented in the form

1, =0, T_ =T (x,0), u+uy(z,0) =0 (1.4)

Here Tey2 (x, 0) is the tangential contact stress acting on the interface between the
stiffener and the half-plane,and Uy is the displacement of points of the half-plane along
the x axis. The following relationship hence holds in the moving coordinate system be-
cause of (1.1).

Fu' = —1_(z), Au'(x,0) = 142 (2,0), 2=k —pW? (1.5)

Let us assume that W << Vkp ..
Since the stiffener does not resist bending , we will still have on the half - plane
boundary

02 (z, 0) = p(r) (1z[<a)y Oualr, 0) =10 (jz|>a) (1.6)

Let us admit that the velocity of stamp motion along the stiffener boundary is less
than the compression and shear strain wave propagation velocities in the half-plane, hence
2 L—2v ¢ 2 Y — VE (L.7)
ﬁ41*2(1~—v2)v>0’7ﬁ1 Viso0, V=W G
By using the Fourier integral transform in the variable x we now find the solution of
the Lamé equations with inertial terms with the boundary conditions (1,5) and (1. 6) in
the half-plane and the condition of decreasing stress at infinity. We hence obtain

a o

vy (2, 0) = — —! Sp(&)dgg“*"’ sin-’—‘—(—af—x)—du (1.8)

B w1
- 0
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Op = U= (1Y
{—py G2 [4B7 — (1 4 2)*]
_ By (1 —v2?
(1 —Bv) 4By — (1 + v92]
Again taking into account that the stiffener does not resist bending , we write the
condition for the relation between v’ (z, 0) and ¥’ (z, 0) which holds on the
contact line

v (2,0) — vy (2,0) =2 —9 () (z|<0) (L.9)

Here & is the angle of stamp rotation upon insertion into the stiffener.
Substituting (1.3 ) and (1.8 ) into (1, 9), we obtain an integral equation to deter-
mine the contact pressure p (z)

a

2@ gy E=2) gt — (e — ¥ @] (10
| 2 g+ | p@H (F75) &6 = mdale —v'(@)
(D—1)6, 648, t) = _ﬂn_ut_du
~ B =gy HO= V05
which can also be represented in the form
o - (1.11)
Sp(E)K( —%) d& = npbys e — ¥ (2)),
Cutotd .
K (t) = u—1—smutdu
-
The statics conditions
P={pea r.=(trea (1.12)

must still be appended to (1,10) or (1.11). Here e is the eccentricity of the application
of the impressing force P, Let us note that the force P should be so large that the con-
dition p (z) > 0 would be satisfied for all |z | < a. Thesecond conditionin (1.12)
sets up the interrelation between e and e.

Three cases can be represented in solving (1, 10) or (1, 11) together with the first
condition in (1,12):

a) If ¢ (£ a F 0) — ¢’ (+a, & 0) = const 5= 0, then the quantity g should
be considered given, and the function p () can have an integrable singularity at the
points £ = 4 a ;

b) If the derivative of the function ¥ (x) is continuous in the neighborhood of the
point £ = @ (or x = — a ),then the quantity q is to be determined, and the func-
tion P (%) should be bounded at the point z = a;

c¢) If the derivative of the function 1 (r) is continous in the neighborhood of the
points = 4 a, then the quantity a is also to be determined, but the function p (z)
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should be bounded at the points = = 4 a.
Letus note that the problem posedhasbeen examined earlierina particularcasein [ 1],

2. Problem on the gliding of an elastic body over the wet
boundary of an elastic half-plane, Let an elastic half-plane Gz, V2, P2
Yy < 0 be covered by an ideal incompressible fluid of thickness h,and let the fluid
density be p. An elastic body (Gy, v;) pressed to the layer boundary by a force P
(Fig, 1) glides at a constant velocity I over the upper boundary of the layer. Let us
connect a moving coordinate system (1. 2) to the body, In this system e is the action
arm of the force, and the length of a section of the body boundary which is in contact
with the fluid is determined by the inequalities — a <{ z <{ @, 2a > h. The pres-
sure P on the fluid surface equals zero outside the contact section. Let us assume that
the flow is potential and stationary. The boundary of the gliding body is describedby the
equation y = — & — ex - (z), where p>0and y> —h forall |z| < a
and the minimalradius of body curvatureis Pmin >> a for all lzl<<a—e,e>0.
Taking account of the assumptions made , we linearize the Bernoulli integral in the
neighborhood of the main flow, for which Uxe = W, vy = 0, po = 0. The contact
pressure p (z) acting between the gliding body and the fluid for} z | < aand also e, &
and e are the quantities desired in the solution of the problem.
We have the equation
Ag=0, ve=W + 22, =20, po—w L (@D
Here and above Uy, Uy are the velocity projections in the z and y axis directions,
and ¢ (x, y) is the velocity potential,
Let us introduce the dimensionless variables

y =y, 2 =zla, 0 ="hla<c1 (2.2)

and we easily see that the degenerate flow, for very small @, in the fluid layer is des-
cribed by the equation cpy"' = (). Solving this equation and returning to the old vari -
ables, we find

9@y =F(@y+ Fa(z), vy=F (2), (2.3)
p= —pWIF\ (z)y + Fy' ()]

Now , we note that a pressure p (z) actsaty = 0 and | z | < @ on the fluid from
the elastic body, and the pressure ¢ (z) at ¥ ="—h and | | << oo from the ela-
stic half-plane. For ¥ =0 and|x|>> awehave p (z) = 0 by uefinition, Satis-
fying these conditions and taking still into account that ¢ = vy = 0 forg = — oo,

we have
x x

w=F1@ = [ | re@— | s & 24)

—0 L4

Here P* (@) =p (@) for |2|< @, p* (2) =0 for | x| > a.
After the customary linearization used in the theory of a thin slightly cambered
wing , we obtain the following condition on the contact boundaries of the fluid and the
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elastic body and the elastic half-plane:
vurt = W{' (z) 2.5)

where ¥ = f (z) is the equation of the boundary. Therefore, we have the following
contact condition with the elastic body by virtue of (2.5)

Fi () = vy (z,0) + ¥ (@) — elW (lz]<a) (2.8)

and with the elastic half-plane
Fy (@) =v (x, =) W (jz|< ) (2.7)

Here U1 and U are elastic displacements of points of the body and the half-plane along
the ¥ axis. The quantity v," (z, 0) is given by (1.3).

To determine the quantity v,” (z, —Ah) , we subject the Lamé equations with the
inertia terms to a Fourier integral transformation in the variable x and we construct their
solution for a half-plane under the boundary conditions

o, (r, —h) = —q (z), Txy (x, —h) =0 (Jz] < o0) (2.8)

and the condition of no stresses at infinity . We alsotake into accounthere that g (z) — 0
as | x| 0o and that the inequalities (1,7 ) hold, We consequently obtain

o0

ve' (x, — h) = Wi@; R sgn aQ (a)e~iex do (2.9)
B = G2 4y — (1 + y»21 BT (1 — ¥ (2.10)

Here Q (c) is the Fourier transform of the function g (z).

Substituting (2,4) and (2. 9) into (2,7 ), and then subjecting this relationship to
Fourier transformation, we set up a connection between Q (@) and the Fourier trans-
form P (x) of the function p* (1)

P _ phwe
C@ =T b= (210

The inverse transformation yields

q(x) x’;iri p(§)d§§ Zoiu: du(t = E’;z) (2.12)
e :

An integral equation in p (x) can now be obtained if the contact condition (2.6 )
is transformed with (2,4), (1. 3) and (2. 12 ) taken into account, We will have

g’<~> -+ =\ pOH (FE)E=nife— @) (219
(le\a, G == 6,0,71)

where H () is given by (1.10). Equation (2, 13) can also be represented in the form
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of (1,11),where 8;2 should be replaced by 0,. Condition (1,12) must aiso be app -
ended to (2,13),

Furthermore , let us examine two possible gliding modes:

a)if P (@ —0) —9y (@ 4+ 0) = const = 0, then the quantity a should be
‘considered known and a solution of (2, 13 ) should exist such that the quantity p (a) is
bounded ( Joukowski 's condition),

b) If the derivatives ' (z) and V" (z) are continuous in the neighborhood of the
point z = a ,then the quantity q is to be determined and p (@) and p’ (a) should be
bounded [2].

Therefore , both problems under consideration are reduced to the same integral equ-
ation of the form (1.10) or (1.11) ( 8,5 = 0, for the second problem). The constants
¢, W and 6, in the integral equation are given by (1.8) and (1. 10) for the first prob-

lem and by (2.10),(2,11) and (2. 13) for the second,

3, Structure of the solutions of the integral equation (1,10),
asymptotic solutions, Evaluating the integral [3], we represent the kernel H (¢)
of the integral equation (1, 10) in the form

H(t) = (citsin|t| —costsift]) sgnt (3.1)

Here c¢1 ¢ and si ¢ are the integral cosine and sine. Using the known expansions of
these functions in series for small ¢ [3], we see that for H () the following represen-
tation is valid for all 0 < |t | << oo .

H@ =In|t|H, () + |t|He () + H3 () + onusgn it (.2)
Hit) = 2 at™ (i=1,2,3)
k=0

. (__1)k - J’l’,(——l)k+1 o .
Gk = r 1) Gok = T3k 1 2)1° ago =C —1 (3.3)

asp = (— 1)7{{(2/511)! (C_ Zk{}ul) +

- 2%k - 1 — 4s
223(23)! (2k —2s + 1) (Zh — 25 = 1)! }
s=1

Here C is the Fuler constant,and 4 > 1 in the expression for @g-
Analyzing the representation (3.2), we conclude that for all | ¢ | < 4, where 4
is an arbitrary number as large as desired , the following relationship is valid;

H (t)= S-sgnt+tlo|t| -+ F (1), F(t)E B (— 4, 4) (3.4)

Here B,* (— A, A) is the space of functions whose £ -th derivatives satisfy the
Holder condition with 0 << o < 1 for ¢t &= [—4, 4] ,
The results of [4 ] can be used to prove the following theorems.

Theorem 1., Let ¢ (z) € B (— a, a), 0 << & < 1. Then if a solution of
(1,10) exists for p &= (0, oo) such that p (z)e Lp (— a, a), 1 << p << 2, then
p (z) has the form
P@) —0@@—)h o@e B (—aa, y-inf(s 2L
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Theorem 2,

letl) $(@) S B (—aa), 0<a<i, 2)y@e
B (a — e, a), e >0, Y/ << B << 1. Then if a solution of (1. 10) exists for a given

p & (0, oo)such that 1) p (z) & Lp (—a, @)1 < p < 2,2)|p ()| <<mym >0
for ¢ — & <{ z <C @, then the relationship

P = — nB.ea + S Va +t [012%" (§) + og (§)] dE (3.9)

—a
a

8@ == Sp@)H(E“’)dg

is satisfied, and p () has the form

p@ =} LZo@, 0@ (~aa),

(3.6)

v = inf (q, ”;1 B — ;)

Theorem 3. Let 1) ¢ (z) = B* (—a,a), 0<a< 1 2v@E
Bf(a—¢,a),e>0, Yy B, 3) Y (x) € By (—a, —a+ &) Then,if
a solution of (1, 10) exists for @ & (0, co) such that 1) p (z) € Lp (—a, a),
1<p<2, 2)ip@|<<mm>0for z=la—e,al and z & [—a, —a

-+ el, then the relationships

a

P = 10w ®+og@ L

(3.7)
3, Vet
_ , dx
wehs = § 1009’ @)+ 02 (01 5Eer
are satisfied and p () has the form
p(a:) =(0(I)V0'2——.’[2, m(x)e Bv(— a, a) (3.8)

y:inf(a, p;1 ,ﬁ*"ii‘)

Theorem 4, Let 1) V¥ (z) € By* (— a, a), 0<a<, )V (@)
B (a — &, a), e >0, Yy <P << 1. Then if a solution of (1. 10) exists for p &
(0, c0)such that 1) p (@) ELp (— @, @), A < p <2, 2) |p' (@) <mym >0
for a — & <{ x < a, then the relationships (3, 5) and

701 [e — ' (a)] — niog (a) =
§ Vate

(3.9)
e B (¥ (@) — ¥ ©) + 0 g (a) — g B} b
are satisfied, and— p(z) has the form
a—z)
pl) = -(V—a:)'z—w(x), o (r) E BY(— a,a) (3.10)

= ifa 2504
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As an illustration, let us present the proof of Theorem 4, taking into account that
Theorems 1 — 3 are proved more simply and by an analogous scheme, We show that a
function g (z) of the form (3, 5) possesses the following properties:

g(x)e B (—a, a), == p;1 ., gly=Ba—¢ea (11

To do this, we represent g (r) by using (3.4) in the form
g(2)=gi1(r) + g:(2) + g3 (2), g1(2) = 2“ (P -2 & p(&) d&) (3.12)

u

[P —olnp + S PEE—o)In|t—r|dg]

s () = ~,%,; Vror(igr)a

Because of the propertles of the function p (§) mentioned in the theorem, and the
properties of F (£) noted in (3.4), it can be shown that &3 (r) € By (— q, a) Let
us differentiate £2 () with respect to z and let us estimate

a

g2 (z) =

sg;(xl>-g;(x2)t<;§;,—31p(§>1)in}~§—:~i—”§;—

}dgg (3.13)

Pl {m{i‘“

‘)

nEM ”P“Lpl-ﬂﬁl—x2ill<1—0, _;__x p«;l s

1 4
< m*(a—a)i-o,

|8 (@) — & @) < 7 Slp(§)|'ln,

z>-—a
Bemi
It follows from (3, 13 ) that &2 @) e B " (—a, @) and g, (x)= B (a — ¢, a).
The following estimates hold for &; (z)

Xg

1 (3,14)

| 81(z) — g1 (z)| = —iS P(E)dgi ST¥ I Pliey o — 2o e

&' (@ =g/ @) = 1p@—=p@]| = mla—2), =>—u

It follows from (3, 14 ) that' &1 () &€ B® (— a, a) and g, (z) € B; ! (a — ¢, a).
Therefore , the relationships (3. 11) are proved.
We note that the integral equation (1,10) can be written in the form

V2 g = aule—v@i—og@) (o< 9

—t

We temporarily assume that the function g£ () is known, then the solution of the
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singular integral equation of the first kind with Cauchy kernel (3, 15), which possesses
the properties mentioned in the conditions of Theorem 4, will have the form [5]

e -+ L= { L o —v @i+ @19

olg (t)—g (@)] 2=

under the additional conditions (3, 5)and (3. 9), Here, the properties of the functions
Y (z) mentioned in the conditions of Theorem 4, as well as the properties (3. 11) of
the function g (z) are used essentially , Equation (3, 16 ) can be rewritten as follows:

_ (o
p(x) - .Vra g

o) (3.17)

0@ = | 2L dt — 0¥ (@) + o€’ (@)]

h(t) = L2 (00, W () — ¥ (@) 4 V' (@) (@ — B)] +

a—tyr
clg (t) —g(a) + ¢ (a)(a —1)]}
We note that k (= a) = 0 , and by virtue of (1, 30) [4], the inequalities
|9 @) —¥ (@) +9" (@) (@ — )| < 44|t —af+ (3.18)
le@®) —gl(a)+ g (@ @—t)| <At —alf®

hold in the neighborhood of the point = @,

Now , taking account of (3, 18) as well as the other properties of the functions ¥ (z)
and g (x) we arrive at the conclusion that k (t) & BY (— a, a), y = inf («, p —

Y, 6): Furthermore , reasoning for the integral (3, 17)just as for the integral (2. 3)

[4], weseethatthe function ® (z) of the form (3, 17) belongstothe class BY (— a, a).

Let us turn to the problem under consideration, The condition (3. 5) is used to de-
termine the quantity @ for variant b) of the first problem, the quantity a4 will be deter-
mined from the first condition of (3. 7) for the variant c¢), and the second condition in
(3.7) permits the determination of the quantities £ and e together with the second con-~
dition of (1,12), Together with the second condtion in (1, 12), condition (3, 5) permits
the determination of the quantities £ and e for variant a) of the second problem, while
the quantities @, € and e for variant b) can be found from conditions (3.5),(3. 9)
and the second condition in (1,12),

As the expansion (3. 2 ) shows, for large values of the parameter A the solution of
the integral equation (1, 10) must be sought in the form [6]

p(x)=,§}2 (@) A (In Ay (3.19)

Substituting (3.2) and (3, 19) into (1, 10 ), inverting its singular part exactly, and
then equating coefficients of identical powers of 2~! and Iln A in the left and right
sides of the relationship obtained,we obtain an infinite system of relations for the se-
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quential determination of the functions py; (z). Limiting ourselves to a finite number
of terms in (3, 19), we can obtain an asymptotic representation for p (z) for large A
by the method mentioned, Using the Banach fixed-point principle a A, () < A << 00
can be found such that for A ~> A, the solution of (1, 10) in the class Lp (— a, a),

1 << p <2 exists and is unique, and converges uniformly in A in the norm Ly (—

a, a) in the double series (3, 19).

We note that 0 < | ¢#|<C 2 /A in(3.2), and hence, for sufficiently large A it is

possible to take H (&) = 1/23: sgn t approximately, In this case (1,10) can be given

the form of the Prandtl integral equation for a finite~span wing
a

& ép(i) g — 5 [ (x)_“PJ+“612[8_¢ @ qz<a (3.20)

—a

¢@ =\ pEdE V(—a)=0, g@)=P

ét/:.x

A whole arsenal of methods of finite-span wing theory , as well as the theory of
elastic stiffeners (stringers ), particularly the results in [ 7,97, can be used to find ap -
proximate solutions of (3,20),

For very large A when the expression in the first square brackets can be neglected
in the right side of (3.20), the solution for variants a) — ¢) of the first problem has
the form

variant a)
p(a) = m:_—ﬂ— [P+ 6 (ngx+i£%+§ & (3.21)
Pe = i, [- 55 iaw’(ﬁ)lftz—""—'f’éédg] (3. 22)
Variant b)
p) =6y, ]/_f‘:f [_. .Jit..i ]/ 2tE § YeE dg} (3.23)

(3.22) and (3, 5) must be appended here for g (z) = 0;

Variant ¢)
a

By (Ve (3.24)
pla)y=-2Vd =% Saﬂ‘f:—am—x)

and (3, 22) and (3. 5) must also be appended here for g (r)==0.
The solution for variant a ) of the second problem is given by (3.23),(3.22) and
(3.5) for g (x) = 0 with 8, replaced by 0, , while we have for variant b)

{ﬂ—z)'*g Vate [W()—vy @)l dE (3.25)
El Vate J @—g% ez

where (3,22),(3.5) and (3, 9) must alsobe appendedherefor g (z) == Q with 049 re-
placed by 6.

plr)=
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A certain modification of the method of "small A " [ 6] permits the construction of
the principalterm of the asymptotic solutionof (1.11) for the problemsunderconsidera-
tion with small values of A. Themain difficulty lies in factorizing the function

u(Vu24 e 4o +1)
Ve (Vurg e 4 1)
Let us henceforth limit ourselves to the construction of just the " degenerate® sol-

ution which is suitable for the case of very small A.
We note that for large ¢ the asymptotic representation

KO~(1+ o)

Le(u)= =1L, () L_(u) (e—0)

holds for a kernel K (¢) of the form (1, 11), and the degenerate solution of the problems
for very small A will be determined by the equation
a

LEL gr = (e~ ¥ @] (21<a)
—a
where for the first and second problems , respectively

Oun — 0,60, o — 0,0,
270+ D60 127 6,49

Then the solutions of the problems for very small A willbe determined asbefore, by
(3.21)—(3.25) and (3. 5),(3.7),(3.9),where g (x) = 0 and the quantity 0,, or 0,
is replaced by the appropriate expression 0p*.
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